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§. Preface
Hello! Welcome to MATH 1ZB3, MATH 1AA3, or whatever course.

I'm Jason Cheng, a second-year (as of time of writing) computer engineering student. This study guide contains, as of time
of writing, the whole content of the courses above, and more. It is cited straight from the textbook, everything important
you need to know. The textbook used is Calculus: Early Transcendentals (2020). I recommend getting the textbook even if
you use this book: it contains tons of examples and diagrams that will help you beyond words can. However, if you can't

pay, just use a SHADOW LIBRARY.

If you're wondering who I am to be making this guide, my grades for the first two MATH 1ZB3 tests should help (the final
exam hasn't happened yet as of writing).

Test #1 Mark: 18/18 (= 100%)

Test #1 Version: 1

Your Answers
1.Dv 2.Bv 3.DV 4. CJ 5. AV 6.Cv 7.AV 8.Bv 9.Cv 10.EV
11.Bv 12. A4 13.DV 14. AV 15. AV 16.AY 17.DV 18.CV
Answers for T1:
Version 1 Answer Key

1.D 2.B 3.D 4.C 5.A 6.C 7.A 8.Bcd 9.Cab 10.E
11.Bcd 12.A 13.D 14. Acd 15. Acd 16. Acd 17.D 18. Cad

Test #1 CIas$ 64.62%
Average:

If you lost marks on the test then you can see where you went wrong by viewing the tests, and the answers to the
tests here: https://mcmasteru365.sharepoint.com/:f:/r/sites/course-695914-group/Shared%20Documents/General/
Test%20Copies%20and%20Keys?csf=1

Test Questions and
Answers:

Test #2 Mark: 15/17 (= 88.24%)

Test #2 Version: 1

Your Answers
1.C¥ 2.Dv 3. AY 4.Bvy D5.Bv 6.EV 7.C«4 8. AV 9.AY 10.DV

11.EX 12.Bv 13.Cv 14.BX 15.Dv 16.AvX 17.CJX 18.EV
Answers for T2:

Version 1 Answer Key
1.C 2.D 3.A 4. B 5.B 6.E 7.C 8.A 9.A 10.D
11.B 12.B 13.C 14. E 15.D 16. Cab 17. Bcd 18. E

Test #2 Class
0,
Average, 53-60%

(Yes, I know I lowkey fumbled on Test 2).

Flexing out of the way, I suggest checking in the outline of whatever PDF reader you are using, and you will see each
chapter, subchapter, and sub-subchapter there. Click to skip to specific chapters or parts.

I have included here explanations of my own to help you through specific chapters and concepts that may be difficult.
Also note that while I have used large headings to denote content of each test, your course schedule will be different every
year- expect some content to be off by a bit, some content to be taught out of order, even some chapters to be skipped
entirely.

On the subject of skipped chapters, several subchapters are not part of your course curriculum. You are responsible for
knowing which ones you need to know, but I have included warnings specific to MATH 1ZB3 at each problematic

chapter.

Last thing: if you are here from my LINEAR ALGEBRA STUDY GUIDE, just know that at this point in my life, I do not feel
entirely great about its contents. Yes, it is a very helpful resource, and yes, I know students that have scored 10+s using it
(I guide others to a treasure I cannot possess), but I think it is not my finest work. It is messy, amateurish, and very barebones.
Fun fact: the LASG is 64 pages. This is 70 (on A4 paper), all while covering only course content. I think that speaks to how
much harder I'm trying to help you understand the content.

This time, I have a better system in place.

Any block math, that is any math in its own paragraph block and surrounded by an outline, for example

Math puns are the first sine of madness.

is an important theorem straight from the textbook, one you are expected to know and understand.
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Any block math, for example

[You(z,y)) = v/p|:) ) +v1-p|:()

p — las (z,y) — (ped, Ybed) under observation

is considered 'important’, as in part of a proof for a theorem, an important byproduct, or an important theorem that
isn't from the textbook. (if you don't understand this example, then ask ChatGPT or your nearest physicist or
something. Trust me, it's funny)

Any inline math, for example 9 + 10 = fol 1262° dz, is used for formatting or anything less important.

As usual, .md source code is posted in the saME pLACE YOU GoT THIs PDF (if you got it elsewhere, I'm not mad at you :D).
0. Review
These chapters should be review from MATH 1ZA3 (or equivalent). You should know everything within by heart.

7.5: Strategies for Integration

n mn+1
L [z"de =25 (n#-1)
2. [Ldz =In|z|
3. [etdx = e”
4. [bodz = &5
5. [sinz dz = —cosz
6. [cosz dz =sinz

7. [sec?z de =tanz

8. [csc?z dz = —cotz

9. [secztanz dz = secx

10. [csczcotx de = —cscx

11. [secz dz = In|secz + tan z|
12. [cscz dz = In|cscz — cot z|
13. [tanz dz = In|sec z|

14. [cotz dz = In|sinz]|

15. [sinhz dz = coshz

16. [coshz dz = sinhz

17. [ £ = Ltan=1 (Z)

z%+a?
18. [ A= =sin"' (£); a>0
a“—x
*19. [ % = 2—1aln ‘ﬁ‘ *This one is easily avoided by using partial fractions.
*20. [ % =1In ‘a: +vVa? + a2‘ *This one can be avoided with trig. substitution.

Tips for integration:

Manipulate integrand.
Expand. Simplify. Factor. Substitute. Rewrite radicals as powers.
Try to work it into a form with an obvious solution.
Classify according to form.
Trig Functions
If the function is made up entirely of trig functions, like f(z) = sin”  cos™ z, consider a trigonometric
substitution.

Rational Functions

If the function is a rational function, like f(z) = gigﬁ , consider partial fraction decomposition.
Radicals

For the common identities vz2 + a2, vVz2 + a2, vVa? — 22, use a trigonometric substitution. For radicals of

form {/g(x), use a substitution.

If all else fails, try the above again.

There are two main methods of integration: substitution and parts. Try to make any substitution. Remember that

you can use the differential term (dz, dy, dt, etc.) as the second term for integration by parts.

Try algebraic manipulation.
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You can split terms separated by +/— into multiple integrals: try to coax the integral into this form.

cosx+1

coszI1 to create

Try multiplying the integral by a term that cancels to zero: for example, multiplying by
a trigonometric identity.

If you don't know how to already, learn how to rationalize denominators.

1. Series, Sequences, and Infinity

This 'section’ of the course will span from around its start to the first midterm.

7.8: Improper Integrals

Improper integrals are definite integrals with an infinite interval or a discontinuous integrand. We will refer to the
former as Type 1 and the latter as Type 2.

7.8.1: Integrals with Infinite Intervals

This is Type 1. Integrals of this type will appear as:

/b " Ha) da

where either a or b are oco.

In order to solve such an integral, we abstract the infinite end to a variable, then take the integral's limit as that variable
approaches infinity. Thus,

/oo f(z)dz = lim f(a:) dz
b

a— 00
and similar for integrals bounded from —oo.
If the limit exists, we call that integral convergent. If not, we call it divergent.

Formally, we define

a) If / f(x) dz exists for every number ¢t > a, then

/ f(z) da:—hm/ f(z

provided this limit exists (as a finite number).

b) If / f(z) dz exists for every number ¢t < b, then

b

/ f(z)dz = lim f(z)dzx
S0 J,

provided this limit exists (as a finite number).

(c) If both / f(z) dz and / f(z) dz are convergent, then we define

/f dm—/ f(z) d:n+/ f(z) da

The following important fact is also presented:

0.9]

1

/ — dx is convergent if p > 1 and divergent if p < 1.
1 X

We call a function of this kind a p-series.

Tip: This isn't in the textbook, but remember that different infinites are different! If two terms go to infinity, you cannot

vz

> Tnz *

Similarly, two infinity-tending terms in a situation like co — oo do not always equal 0, etc.

just 'cancel them out'. Example Both go to infinity as ¢ — oo, making 2, but this term actually diverges to oo, not 1.
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1
) 1 )
this case, the infinities actually do 'cancel out'. But you cannot just assume they will. Try 'Hopital's rule on the example

To figure it out, use I'Hopital's rule. Eg. 22 Differentiate top and bottom taking limit to infinity lim, ,,, = = 0, so in

that goes to oo above.

7.8.2: Integrals with Discontinuities

This is Type 2. Integrals of this type will appear as:

s[ﬂ@m

where the function f(x) has a discontinuity at ¢, or like this:

/ab f(z) dx

where there is a discontinuity at z = ¢ where a < ¢ < b.

In the first case, you replace ¢t with the limit as the bound approaches the discontinuity, as in

b ) ,
/at fle)de = tllgl/a flz)dz  or /t f(z) dz = tlirg/a f(z)dz

We call the subsequent improper integral convergent if the limit exists and divergent if it does not.

Formally, we define

(a) If fis continuous on [a,b) and is discontinuous at b, then

/ab f(z)dx = tli>r1171‘ /atf(w) dz

if this limit exists (as a finite number).

(b) If f is continuous on (a, b] and is discontinuous at a, then

/abf(ac)da: = t1_1>121+ /tb f(z) dx

if this limit exists (as a finite number).

The improper integral / f(z) dz is called convergent if the corresponding limit
a

exists and divergent if the limit does not exist.

(c) If f has a discontinuity at ¢, where a < ¢ < b, and both / f(z) dz and / f(z) dz are convergent, then we define

/f m_/f m+/f ) dz

The Type II p-series acts differently than the Type L. It is one of the biggest mistakes students make (McLean said that).

/ — dx is convergent if p < 1 and divergent if p > 1.

or the exact opposite of the Type I.
7.8.3: The Comparison Test

This is a way to find out if an improper integral converges or diverges without finding its exact value.

4/42


af://h4-7
af://h4-8

Last revised 8/8/25, 11:34 PM

If f, g are continuous functions with f(x) > g(z) > 0 for z > a,
(a) If / f(z) dz is convergent, then / g(x) dx is convergent.

(b) If / g(x) dz is divergent, then / f(z) dz is divergent.

Basically, if you know a function f to be either convergent or divergent, you can guarantee another function g to be one of
them based on the relationship between their y-values. If f converges and g is underneath f for all z (at least, all relevant x

values in the integral), it will also converge. If f diverges and g is above f for all z, it will also diverge.

11.1: Sequences

Sequences are lists of numbers following some specific pattern. As such, they can be represented as functions or in sigma
notation. (Note: sequences and series are NOT the same! This is a common mistake! Most of the theorems in Ch. 11 will
only work for one or the other so do not mix them up. Additionally, if a sequence converges, it does NOT guarantee its
series converges! However, since convergent series will always have convergent sequences, this may lead you to form

incorrect assumptions when in reality you got lucky.)
11.1.1: Infinite Sequences
An infinite sequence is a sequence where there is a term a,, for every positive integer n.

If we graph a lot of values of an infinite sequence, it may appear to begin to converge at a specific value.

A sequence {a, } has the limit L and we write

lima, =L or a,— Lasn— o0
n—oo

if we can make the terms a,, as close to L as we like by taking n sufficiently large.
If L exists, we say the sequence converges (or is convergent).

Otherwise, we say the sequence diverges (or is divergent).

Again, do not confuse this with the convergence of a series.

If we define the general term a,, to be expressed by a function f(n) = a,, we can say that lim a,, = L. Find below some
n—oo

useful sequence laws. These are the same as the limit laws you already know but in a slightly different format.

Suppose that {a,} and {b,} are convergent sequences and c is a constant. Then:
1. lim(a,+b,) = lim a, + lim b,
n—oo n—oo n—oo

n—oo n—oo n—oo
3. lim ca, =c lim a,
n—oo n—oo
4. lim (a,b,) = lim a, - lim b,
n—oo n—oo n—oo
. a’n ]'imn—>00 a’n . o
S T, T Tmmb, 70

lim a? = [lim a,)? if p > 0and a, > 0
n—00 n—oo

The squeeze theorem is also helpful. It is like the comparison test, but you determine the exact value of a limit.
Essentially, if a sequence is 'squished' between two other sequences above and on the bottom that both converge to the

same value, the sequence in between will also converge to that value. This can be very powerful if you know how to use it.

If a, <b, <c¢,forn>ngand lim a, = lim ¢, = L,then lim b, = L.
n—00 n—00 n—00

The following formula can also prove useful:

If lim |a,| =0, then lim a, =0
n—oo n—oo

A sequence's convergeability cannot be removed by function composition, that is if you pipe every term of a convergent

sequence through a function f(a,), it will still be convergent. Formally,

If lim a, = L and the function f is continuous at L, then
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This may be important: these are what will happen for sequences of the form »":

0 if —1<r<l1
lim " = 1 ) %f r=1
n—00 does not exist if r = —1
diverges if |r] > 1

11.1.2: Monotonic/Bounded Sequences

A sequence is called increasing if a,, .1 > a, for all terms n. A sequence is decreasing if a,,; < a,, for all terms n. If a

sequence is either increasing or decreasing, it is monotonic.

A sequence a, is bounded above by M if:
a, < Mforalln>1

Or it is bounded below by m if:

m<a,foralln >1

If a sequence is bound above and below, then it is called a bounded sequence.

The Monotonic Sequence Theorem states that

Every bounded, montononic sequence is convergent.

In particular, an increasing and bounded above sequence converges

and a decreasing and bounded below sequence converges.

11.2: Series

A series is the sum of a sequence's terms. Please do remember not to confuse the two.

11.2.1: Infinite Series

Sigma notation is most commonly used for series. An infinite series, where all the infinite terms of an infinite sequence

are summed, is notated like such:

E ap, or E a,

n=1

A partial sum is a sum of the terms of a sequence up to a term n, such that s, = a; + as + -+ - + a,.

o0
Given the series Z a, and its n-th partial sum

n=1
Sp =0a1 +ag+ -+ ap,
If the sequence of partial sums {s, } converges and lim s, = L where L is a real number,

n—oo

{an} is convergent and L is the sum of the series, expressed as

ian =L
n=1

But if {s,} diverges, the series is divergent.

Something you should take away from this is that a series is just the limit of the sequence of partial sums of a sequence.

This can be helpful to visualize the concept.

11.2.2: Sum of a Geometric Series

The geometric series is a series of form

o

Z ar" ' where a#0

n=1
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This series is very common, and all you must know about it is that

A geometric series is convergent if
Ir| <1

If a geometric series is convergent, its sum is
a
1—r7r

If |r| > 1, the series is divergent.

S, I <1

Note that some questions may pose a geometric series with a shifted index, like ar™, and you will need to shift it
back/front accordingly to bring it to the provided form, or else the equations will not work. If you are provided a shifted
index, you may alternatively just use the fact that a is not necessarily the value in the format given, but the first term of
the geometric sequence. Find the first term and use that instead, and r should be unaffected by a shifted index, and you'll

get the same answer.

11.2.3: Tests for Convergence

Remember a series is divergent if its sequence of partial sums is divergent.

0.9]
If the series Z a, is convergent, then lim a,, =0
n—oo

n=1

Essentially, if a series is convergent, its sequence will converge to 0. Common mistake: this is not true in reverse! This is a
very very very common mistake to make. Kindly do not make it. All convergent series will have a 0-sequence, but not all 0-

sequences have a convergent series. It's the square/rectangle thing.

If lim a, does not exist or # 0, the series is divergent.
n—o0

Remember the common mistake, this does not mean that the series will be convergent if the limit is 0. Here is a helpful

graphic:
D.N.E: Series is guaranteed divergent.
lim a, = ¢ #0: Series is guaranteed divergent.
e 0: We have no idea. (The series could be convergent, but we don’t know based on this.)

The first three limit laws listed above for sequences are also correct for series. In particular, these are the addition,

subtraction, and multiplication laws.

If Sa,, and b, are convergent series, then:
@ can=c an
(b) fjl(an ) = fjlan " f;bn
(© i( ~by) = fj - fjb

11.3: The Integral Test and Estimates of Sums

11.3.1: The Integral Test

(0.9]
Suppose f is a continuous, decreasing, positive function on [1, 00) and let a,, = f(n). Then the series Z an
n=1

converges if and only if the improper integral [{° f(z) dx is convergent.

(i) If / f(z) dz is convergent, then Z a, is convergent.
1

n=1

(i) If / f(z) dz is divergent, then Z a,, is divergent.
1

n=1
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Here are the integral test's caveats in a more legible form.

The function must be ultimately decreasing for z > N for some number N.
The function must be entirely positive.

The function must be completely continuous.

The three conditions above must only be true on the integral's interval.

You can start the improper integral with other bounds like [

Note that although you get a numeric result if it is convergent, that result is not the sum itself.

The p-series was discussed back in 7.8.1, but only its role in an improper integral. That rule can also be applied to the p-
series as a series.

o0

1

E — dx is convergent if p > 1 and divergent if p < 1.
n

n=1

Common mistake: Please remember that an improper integral is not the same thing as a series summation. All the

improper integral does is prove the sum of the area underneath the sequence exists as x gets large.

;an + /1 f(z) dx

11.3.2: Estimating the Sum of a Series

The partial sum at any term n can be used as a approximation of the actual sum, s. The difference between an

approximation of the sum and the sum itself, s — s,, is known as R,, or the remainder of the approximation.

Suppose f(k) = ag, where f is a continuous, positive, decreasing function
for x > n and X, ;a, is convergent. If R, = s — sy,

/n: f(@) < Ra < /noo f(z) da

Or in simpler terms, iterating through partial sums of each term, each successive approximation will be more precise than
the one before. This is useful when a question asks for accuracy to certain decimal point. Note that the improper integrals

are NOT the approximations themselves. Here is some explanation on what these integrals actually are:

Recall that R, is not an integral, but a sigma infinite summation of the sequence.
Since f is decreasing, the sum of values at integer points can be compared to integrals:
The sum from k = n + 1 to oo is roughly comparable to the integral of f(z) from z = n + 1 to co.
This can be a common mistake: people do not understand how the sum of a series from n — oo is not the
same as the integral on the same range. Why?
On sigma notation, we add each term for every positive integer value of n.
For the integral, we add each term for every positive value of n.

Don't confuse all of this with the convergence of the sequence!

The integral fnoil f(z) dr underestimates the sum because the rectangle heights (like f(k)) are greater than or equal to
f(z) forz € [k, k+ 1].
But if the integral is summing so many more values while the sum is summing only values from each positive
integer, how is this possible? If the integral is summing f(59.999), (60), f(60.001) while the summation is
summing only f(60), how is the summation larger than the integral?
Well, remember the condition of the integral test: the function must be decreasing. If we create a rectangle
spanning width 1, it will EXPAND PAST THE SLOPE OF THE DECREASING LINE, since we only take a sample every
positive integer.
In contrast, the integral is much smoother, since we take infinite samples, and thus is always smaller than
the partial sum.

The final step to understanding all of this is that the rightmost term [ f(z) dz is the only term that starts at n. The
leftmost term and the remainder both start at n 4+ 1. While the subscript R,, seems to imply it is the sum of the terms n
to 0o, look at its definition: it only sums the terms from n + 1 to co. As such, this theorem states that if we shift back
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the index to n, the extra area afforded to the integral in the area x = (n,n + 1) is enough to make it so the integral is

greater than all that extra area over the curves given to the summation's rectangles.

HERE 1s ANOTHER GRAPH that demonstrates this. In order from top to bottom are the left to right terms in the
inequality.

By adding s, to all sides, we get

sn—i—/n:f(m) Ssgsn—i—/noof(a:)dx

This can be used to provide upper/lower bounds for s.
11.4: The Comparison Tests
The comparison tests work similarly for series as they do for sequences.

11.4.1: Direct Comparison Test

Supppose that Xa,,, Xb,, are series with positive terms.

(i) If Xa, is convergent and b,, < a,, for all n, ¥b, is also convergent.

(ii) If Xa, is divergent and b,, > a,, for all n, ¥b, is also divergent.

Since you need a known convergent/divergent series to use the direct comparison tests, these two families are most
common.
P-series
Converges when p > 1, diverges when p < 1
Geometric series

Converges when |r| < 1, diverges when |r| > 1

11.4.2: Limit Comparison Test

The direct comparison test is useless in the case where your known series is divergent and larger than your target series,
or when your known series is convergent and smaller than your target series. In these cases where you still want to use a
comparison (like if the series is very similar to one of the good families above), you use this.

Supppose that Ya,,, ¥b,, are series with positive terms. If

where c is finite and ¢ > 0, then either both series converge or both diverge.

11.4.3: Estimating Sums

If we can say that every term of the series {a,} is smaller or equal to than every corresponding term of the sequence {b,},

then the remainder of {a,}, R,, will be smaller or equal to the remainder of {b,}, T,,.

If we look at the remainder estimate for the integral test, we have

/°° f@) < R, < /n°° f(@) do

which we can adapt to this method of sum estimation:

RnSTng/oof(x)dx

We can use this to approximate the sum of a series given n. Remember all these methods to estimate sums do not give the
sum itself, unless you are given the partial sum s,,. You estimate the sum by finding R,,, or how far the partial sum at n is
from the real sum.

11.5: Alternating Series and Absolute Convergence
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11.5.1: The Alternating Series

An alternating series is a series of form a,, = (—1)~11"p, where b, is positive.

If the alternating series
an = (=)™t (b, > 0)
satisfies the conditions:

(i) bpy1 <b, foralln
(ii) lim b, =0

n—oo

Then the series is guaranteed to be convergent.

This is obvious if you think about it.

11.5.2: Estimating Sums of Alternating Series

If s = Z(—l)"_lbn, where b, > 0, is the sum of an alternating series that satisfies

(i) bpi1<b, and (i) limb,=0

n—oo

then:

IR, = |s — sp| <bnia

Essentially, the remainder is always smaller than the value of the first neglected term. Note this does not apply to other
kinds of series. Do not try.

11.5.3: Absolute and Conditional Convergence

A series Ya,, is called absolutely convergent if the series
of absolute values ¥|a,| is convergent.

Note that if a convergent series only has positive terms, it will be absolutely convergent too.

A series Ya,, is called conditionally convergent if it is
convergent but not absolutely convergent.

The following is evident:

If a series Xa,, is absolutely convergent, it is also convergent.

11.6: The Ratio and Root Tests

11.6.1: Ratio Test
o0
(i) If lim Intl| _ L < 1, then Z a, is absolutely convergent (and convergent).
n—oo | Qp —
n=1
o
(i) If lim otll oL >1 or lim |[=%1|=co, then Zan is divergent.
(iii) If lim @ntl|—1, the Ratio Test is inconclusive.
n—oo a,n

The ratio test usually will fail for certain types of sequences. More on this in 11.7.

11.6.2: Root Test
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This is most conveniently used when there are n-th powers involved.

oo

(i) If lim 4/|an| =L <1, then the series an is absolutely convergent (and therefore convergent).

n—00
n=1

o0
(ii) If lim 4/|an] =L >1 or lim y/|an| = oo, then the series Z an is divergent.
n—oo n—oo =1

(iii) If lim {l/ la,| =1, the Root Test is inconclusive.

n—oo

If the root test fails, the ratio test will also fail. However, if the ratio test fails, there are a small number of situations

where the root test will still succeed. In most other cases, the root test really isn't worth using.

For example, when there is a n-th power overall, as in over the whole thing and not just a term or two.

11.7: Strategy for Testing Series

The strategy around testing a series for convergence/divergence is based on its form.

Test for Divergence: If you can see that lim,_,« a, may be different from 0, then apply the Test for Divergence.
p-Series: If the series is of the form ) 1/n”, then it is a p-series, which we know to be convergent if p > 1 and
divergent if p < 1.
Geometric Series: If the series has the form Y  ar® ! or }_ ar”, then it is a geometric series, which converges if |r| < 1
and diverges if |r| > 1. You may need to do some algebraic manipulation.
Comparison Tests: If the series has a form that is similar to a p-series or a geometric series, then a comparison test is
a good choice.
In particular, if a,, is a rational function or an algebraic function of n (involving roots of polynomials), then use a p-
series.
Break it down to a p-series form, then compare. You should keep the highest power of p.
The comparison tests apply only to series with positive terms, but if ) a, has some negative terms, then we can
apply a comparison test to > |a,| and test for absolute convergence instead.
Alternating Series Test: If the series takes the form > (—1)""1b, or 3_(—1)"by, then the Alternating Series Test is a
strong candidate.
Note that if Y | b, converges, the original series is absolutely convergent and thus converges.
Ratio Test: This test is often effective for series containing factorials or other products, including terms with a base
raised to the n-th power.
Be aware that for p-series and rational/algebraic functions of n, the limit of |a,,.1/a,| approaches 1 as n — oc.
Therefore, the Ratio Test is generally not useful for these types of series.

Use a Comparison Test instead.

Root Test: If the n-th term a,, can be expressed in the form (b,)", then the Root Test can be a helpful tool.

Integral Test: When a, = f(n) and the integral [ f(z)dz is straightforward to evaluate, the Integral Test can be
applied effectively, provided its hypotheses are met.

Remember the function must be ultimately decreasing, positive, and continuous on the interval.

11.8: Power Series

11.8.1: Power Series

A power series is a series of form
o0
E chx™ =co+crx + cox® + ...
n=0

where the cs are constants and the zs are variables. For values of z, the series may either converge or diverge. The goal of

solving a power series is usually to find for what values of x the series will converge, the interval of convergence.
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A series of the form

o0
ch(x —a)"=cy+ci(z—a)+eyz—a)+...
n=0

is called a power series centered at a.

To solve a power series, you usually use either the ratio test or the root test.

11.8.2: Interval of Convergence

For a power series c,(z — a)”, there are only three possibilities:

(i) The series converges only at = a.

(ii) The series converges for all z.

(iii) There is a positive number R for which the series converges if |z — a| < R
and diverges if |z — a| > R.

R is the radius of convergence of the power series. In case (i), R = 0, and in (ii), R = oo. The interval of convergence is all
values for which the power series converges. In case (i), the interval of convergence is a single point x = a, and in (ii), the

radius of convergence is £ = (—o0, 00). In case (iii), the inequality can be transformed:
lt—a|<R—a—R<z<a+R
to form the interval of convergence.

In case (iii), when = a &+ R, the power series may converge or diverge. Thus, if you find yourself in this situation, you
must test both endpoints to make sure they either converge or diverge. Eg. On the interval 2 — 5, you must test both 2 and
5 to figure out if it is [2, 5], (2, 5],. ..

Appendix E: Sigma Notation

You should probably know what sigma notation is before starting the course, especially if you read the prior chapters

(sorry but I'm not putting the chapters in strictly learning order), but contained are some formulas and facts that may be

important.
If ap, @my1, - - ., a, are real numbers and m, n are integers such that m < n, then
n
E A; = Ay AGm+1y -+ -5 Aan
i=m

This notation means the following:

Starting from ¢ = m, for every integer value of ¢, the term a; is added to a cumulative sum.

The summing stops when ¢ = n, thus the last value is a,,.

Several rules similar to those from the Limit Laws hold.

If ¢ is any constant (not dependent on 7), then:

(a) zn:cai = czn:a,-
(b) zn:(az' +b;) = En:ai +§n:bi

n

(b) ) (ai—b;) = iai - ibi

t=m
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The following formulas are the most useful part of this section.

Let ¢ be a constant and n a positive integer.

3

n

(a) l1=mn (b) Zc:nc

(©) izzn(nz—i—l) (@ iizzn(n-l—l)t;@n—i—l)
& g n(n + 1) 2
@ Y= |

At least memorize the last three, since the first two are at least somewhat derivable on the fly.
Mathematical Induction

The textbook is [l when it comes to induction, so I recommend THIS VIDEO by my mathematics GOAT Professor
Leonard to learn about it. Here is what the textbook has to say:

Let S,, be a statement about the positive integer n. If we prove that:

o Sjistrue.
o Sky1 is true whenever S, is true.

Then S}, is true for all positive integers n.

Just do a lot of practice problems and you'll probably be fine.

2. Power Series, Differentials, and Parametrics
The following will cover around the material from Test 2.
11.9: Representations of Functions as Power Series

11.9.1: Representations of Functions using Geometric Series

Similar to how we used trigonometric identities to break down integrals into more easily solved forms, we can do the

same to help convert functions into power series using a geometric series.

1
1—=x

:1—|—az+x2+---=2w” lz| <1
n=0

The idea is to turn a function into this form, where we replace « by something else, and turn it into a power series.
Remember that not necessarily all of the z terms must be removed in the power series: z°X%° jn is perfectly valid. This is
because z does not rely on n, so we can remove it without issue. This means you can reshape the sequence, factor out z
terms, do whatever to get it in the format required.

11.9.2: Differentiation and Integration of Power Series

If a function can be a power series, we might like to integrate or differentiate it. A way to do this is to
differentiate/integrate each term of the power series separately.
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If the power series Xc,(x — a)" has a radius of convergence R > 0, then the function

o0

f(z) 200+c1(m—a)—|—02(az—a)2+---:ch(x—a)"

n=0

is differentiable (and therefore continuous) on the interval
(a— R,a+ R)

and the following is true.
1) f'(z) =c1+2c2(z —a) + 3c3(z —a)* + - = chn(w —a

T —a)? r—a)
(ii) /f(:c)d:c:CJrco(a:—a)chl%+C2%+ ..

o0 (£E _ a)n—i—l

n=0

)n—l

Here is an alternate symbolic phrasing of the two true statements above:
(i.alt) d i cn(z —a)”
' dr | = "

(ii.alt) / [f: cn(x — a)n] dx

n=0

d
dx

/ len(z — a)"] da

[en(z — a)"]

M 20

Il
=)

n

There are a few considerations you should keep in mind:

These only work with power series. Do not rely on this for other types of series.

The radius of convergence R is unchanged after differentiation/integration, but its interval of convergence may

change.
Specifically, the new differentiated/integrated function may now diverge/converge at one of the interval's

endpoints.

11.10: Taylor and Maclaurin Series

In the last chapter, we used a geometric series to turn a function into a power series. Using what we will learn in this

chapter, Wwe can express some more functions as power series.

11.10.1: Definitions of Taylor and Maclaurin Series

If f has a power series expansion at a, or

fl®)=co+ci(z—a)+ca(z—a)’+... |t—a|<R

then its coefficients are given by

g '(a)
In other words, |
@) =3I o
= f(a) + fll(!a) (z —a)+ fl;(!“) (z—a)? + fl;(!“) (z—a)+...

This series is the Taylor expansion of f(z) about a. When a = 0,
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This series is called the Maclaurin series.

Note that a Taylor series's sum is not necessarily equal to f, like with a geometric series. If the function does not have a
valid power series representation at a, then its Taylor series will just be an approximation. Additionally, the power series
expansion of f at a is unique.

11.10.2: When is a Function Represented by its Taylor Series?

£™(a)

n!

We call the sum of polynomials up to the n-th term of a Taylor series (z — a)™ by the name T),(z), or the n-th degree
Taylor polynomial of f at a. Let the quantity R,(z) be the remainder of a Taylor series' sum and the function itself at n
terms, i.e f(x) = Th(x) + Rn(z). If we can prove that R(x) approaches 0 at infinity, we can say that the Taylor series

represents the function. Formally,

If f(x) =T, (x) + R,(x), where T, is the n-th degree Taylor polynomial of f at a, and

lim R,(z) =0

n—oo

for |z — a| < R, then f is equal to the sum of the Taylor series on |x — a| < R.

The following is called Taylor's Inequality and is useful to prove a function is equal to the sum of its Taylor series on an

interval.

If | f("*Y(z)| < M for |z — a| < d, then the remainder R, (x) of the Taylor series satisfies

|R,(z)| < |z —a|"™ for |z—a|<d

(n+1)!

Common mistake: In Taylor's Inequality, the numerator is of form f(*1)(z), while in the regular Taylor/Maclaurin series,
it's f"(a) instead. Don't mix this up.

Taylor's inequality is much harder to grasp than the Alternating Series Estimate or the Integral Estimate even though

they may seem similar. I will try to explain in a way different from the textbook.

Let's say we have a function f(z). Then, we try to approximate it with its nth Taylor polynomial. It is clear that this is not
a perfect approximation of the function as you move further away from the point it is centered on, a. We may not be able
to find the exact value of the difference between the function and your approximation, but we sure can define how big it
can be in the worst possible scenario. We are interested in the difference between the functions specifically in a domain of

z including the center point, [z, x5].

We do not know what z is. This is important. We have a range of z-values we are interested in, [z, z5], but we could be at
any z in that range. As such, we need to consider the worst-case at every turn. Even if a question asks you for the lowest

possible value of R,,, you must find the 'maximum’' value of R, by choosing your value of z to get the highest answer. This
is because we are doing the worst-case. If we do not maximize its value, our answer will not work for some of the z-values

in the domain, which will be wrong.

Let's take a look at the last part in the inequality, |z — a|*™. We want our R,, to be as big as possible by choosing a
suitable z, so this term must be as large as possible, i.e the term furthest on the edge of [z1, z2] assuming a is at the

interval's center. Therefore, we choose the value of = that maximizes |z — a.
Then, about M. While it may be tempting to just paste-in-place f"*Y(z) = M in to get

Fo ()

(n+1)! z—a

remember we want to optimize this whole expression to be as large as possible. There is another way to phrase all this
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called the Lagrange form which is a bit clearer:

F(E)

4 lntl
(n+1)! al

|z

which establishes that the argument of the f(*1) is not just some x, but whichever value in the domain [z, 2] that

maximizes the value of the function. In essence, we can rewrite Taylor's inequality as

)] Lg[ﬁ};z] (| — a|)™" ]

to emphasize that we are manipulating the values of z we use in order to maximize the value of R,, which, reminder, we

‘Rn(x)’ < [ max (ﬂ

€€[$1,$2] (n + 1)!

need to do, or else our solution will not cover every z-value in [z1, 2].

n is provided in the problem, of course, and you can just plug it in as is. (Editorial note: while I usually reserve the \boxed
element for theorems out of the textbook, I'm using it here because I believe it to be clearer than the textbook version of

Taylor's Inequality.)

This fact may also come up when solving these kinds of problems, as well as other limit problems:

mn

lim — =0
n—oo !

It can be found that e? is equal to the sum of its Maclaurin series:

o0 mn
e‘”zg —  forallzx
n!
n=0

Fun fact: this is a way to find an expression for the constant e, as if we set z = 1:

11.10.3: Maclaurin Series of Important Functions

You should try to derive these yourself as an exercise, but here they are in one block for reference. And yes, you should be
expected to memorize all of these. The (fl) in the bottom is called general binomial coefficient, and it is not the same

thing as a combinatorial.

1 0.9]
:Zx":1+:c+a:2+:c3—|—--- for |z| < 1 R=1
-z
P A A for all R=
e—Z%H— +f+§+¥+'” orall x = 00
_ 0 gl JE T B
sm:c:nz:%(—l) m:x—waﬁ—WnL--- for all z R =00
0 o 22 gh 26
cos:cz}__;(—l) (2n)!=1—§+z—a+--- for all x R =
00 p2n+l N B S
tan‘%czZ(— )" =—r—— 4+ —— —+ - for |z| < 1 R=1
s 2n+1 3 5 7
0 " 2 .3 4
n=1
> [k k(k—1 k(k—1)(k—2
(1+m)k=2(n>w"=1+km+%w2+ ( 3)'( )a:3+--- forjz| <1,keR R=1
i ! !

11.10.4: New Taylor Series from Old
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If we know the Taylor series expression of a function, we can reverse-engineer a function from its expression by
manipulating the series expansion we know. The previous table of known Maclaurin series expansions is useful for doing
this.

Idk man that's all there is to it this is another reason I recommend you get the textbook. The textbook, the Cengage Early
Transcendentals (ISBN: 978-1-337-61392-7), has examples and stuff in this section you should read. It can be expensive,

which is why I recommend annas-archive.org.

11.10.5: Multiplication and Division of Power Series

Since series expansions are polynomials, we can multiply and divide them. So if you get asked to find the series expansion
for a function that looks like a multiplication/division of two functions whose expansions you know (again, refer to the

table above), you can easily find the series expansion that way.
11.11: Applications of Taylor Polynomials

11.11.1: Approximating Functions by Polynomials

The main use for Taylor polynomials is to approximate a function f around a point a with polynomials. The more terms
you add, the better your approximation becomes. The remainder R, (z) = f(z) — T,,(z) comes to mind again, since it
defines how 'good' of an approximation your n-term Taylor series is to the function itself. You can also use Taylor's

inequality to estimate your error.

11.11.2: Applications to Physics

If you want to simplify an equation in physics, you can use a Taylor series to get a simpler approximation, especially if the

interval of interest is small. That's it.
8.2: Area of a Surface of Revolution

8.2.1: Finding the Area of a Surface of Revolution
A surface of revolution is formed when a curve is rotated about a line.

The method we use to find the area of a surface of revolution is based on splitting up the curve into small segments, then
rotating each around the axis to get a very polygon-looking approximation. We find the surface area of each revolved
segment and sum them all up. If we do this with a curve split into an infinite number of small revolved segments, we get

the whole surface of revolution.

When rotating the curve y = f(z),a < = < b about the x-axis, the area of the surface of revolution is

S = /ab27rf(:c)\/1 + [f'(z)]? d=

b / 2
S = / 2myq [ 1 + (ﬁ) dx
a dx

You don't HAVE to know exactly how it works. But, you really, really, should, so here's my version about it. If you recall

In other terms,

Chapter 8.1: Arc Length, the formula for arc length fromz =a — x = b s

s= [ir p@pra

and if we take the derivative (oversimplification but its practically what we're doing), we get

ds =+/1+ (f'(x))? dx

We needed to do this because we want to get small elements of the curve (ds) and revolve each of them.
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Now, let's revolve our small curve element around the axis. You can look into how this is calculated, but a revolved curve

such as this is called a frustum, and the formula for a frustum's surface area is

A =27 - r - (slant height)
=27 f(z) - ds
Substituting ds:

=2m- f(z) - 4/1+ (f'(2))?
Since we're revolving around the z-axis in this case, the radius of the revolution is the y-value, i.e f(z).

Let's sum every one of these frustum area elements continuously by integrating over the interval.

5= /27rf T (f(2))? da

This is the final equation we can use. However, if we're revolving around the y-axis instead of the z-axis, the radius would
be the z-value instead.

S = /ab2ﬂ'x\/1—|— (f'(z))? dx

And since most y-axis problems have their equations set up like z = g(y), we can write the equation like this:

S = / 27 g(y (g())2dy

Nevertheless, the most concise general form for any case can be reached by substituting ds = 1/1 + (f'(x))? da (or

b
S:/ 27r ds

Note that there are technically 4 variations in total: two for revolving around z and y axes, and each can be expressed in

equivalent) to get

terms of z or y.

While you could just memorize these equations, it is much easier to understand how they are derived so you can fix any
issues or adapt to any kind of question, since it can get confusing if you just memorized a bunch of equations.

For comparison purposes, here are all four variations.

Axis of Revolution Function Form Radius Differential ds Surface Area Formula

T-axis y = f(z) y 1+ (dy/dz)? dz

J
T-axis z = g(y) 1+ (dz/dy)2d
g\y Yy y)©ay /cd (

y-axis y = f(z) T V14 (dy/dz)? dz /b

y-axis z = g(y) x V14 (dz/dy)? dy /d \/

8.3: Applications to Physics and Engineering

8.3.1: Hydrostatic Pressure and Force

Pressure is given by P = pgd where p is density, g is the gravitational constant, and d is depth. Normally, we use these
values:

p is 1000 kg/m3 in water, which is most common. If they use another liquid, they'll tell you the density.
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gis 9.81 m/s® unless you're in space or something, in which case they'll tell you what g is in that case.

d is the special one.

Finding pressure at a singular point is easy. What if you want to find pressure at a rectangle? What if you want to find
pressure at a larger shape? Note that the only mentioned problem type is when you're trying to find pressure against a

vertical object.

In these cases, you use the fact that pressure is the same in all directions. This means to find the pressure acting on a
rectangle, we can multiply the pressure by the rectangle's area. But since pressure increases as we go down, we can only
do this when our rectangle spans negligible depth. In other words, its height is small. So, if we want to find the pressure

acting on a vertical shape, like a trapezoid, we do the following:

Create a coordinate system.

Pick a sensible origin, one that makes it convenient when you start integrating and such later.
Model the shape as a bunch of rectangles.

Remember the formula for pressure on a rectangle is P = pgd - A

Adapted for an infinitesimally thin rectangle where height is y and width is w(y), P = pgd - (w(y) - dy)

Integrate on the water-covered interval defined by your coordinate system, P = fab pgdw(y) dy

8.3.2: Moments and Centers of Mass

This subchapter will not be tested in this course but is here for posterity.

We want to find a point P on a planar object where a thin needle, placed on P will balance it perfectly. P is called the

center of mass.

A moment is m;x;, where m is a mass and z is its corresponding distance from a reference point. To find the center of

mass of a system of disparate massed points, we sum all of the moments and divide by total mass, i.e
n

Z m;T;

i—1

R
> m
i—1

T =

This works for point masses and 2d problems, but what about continuous distributions of mass?

We use the fact that the center of a mass of a rectangle is exactly on its center. Let us take a section z = [a, b] of a function
f(z), the region bounded by it Z. We split it up into a bunch of rectangles. Let's say we have a rectangle from [z, z5] with
the middle of this interval at z = ;. The center of mass of this rectangle will be exactly in its center (z;, %f(ii)). The mass

of the region of the rectangle is its density times its area, so m; = pf(z;)Ax.
The moment (about the y-axis) of the region R; is its mass times the distance to the reference point, so
My(R;) = (p- f(z:) - Az) - z;

The moment of the whole region & will be the sum of every moment of each rectangle as the number of rectangles goes to
infinity.

n b
M, = lim 3 7Sz 0w = | afta)da

a

By changing the distance used to 4 f(z;) we can find the formula for the moment about the x-axis:

n b
M, = lim 3 SU@)? Az =p / S (@) do
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Now the center of mass of all of Z (for both z and y) using z = %:

b b
i-g [ st G- [ 5@

This all assumes that density p is constant. If it isn't, these will not work.

If the region Z is bounded by another function g(x) instead of the x-axis, then we adapt the formulas:

8.3.3: Theorem of Pappus

This subchapter will not be tested in this course but is here for posterity.

Let Z be a plane region that rests entirely on one side of a line [
in the plane. If Z is rotated about [, then the entire volume of
the resulting solid is the product of the area A of # and the
distance d traveled by the centroid of Z.

9.1: Modeling with Differential Equations
A differential equation is an equation that contains both an unknown function and one or more of its derivatives.

9.1.1: Models for Population Growth

Population growth is based not on a fixed rate, but on what the population at the time is. If P is the population at time ¢,
then we can say that the rate of growth of the population is proportional to the population at ¢, or

L p
dt

where k is a constant.

Of course, populations cannot keep growing forever, so if there is some sort of 'carrying capacity’ M, the formula may
look more like this:

dP P
%—’“P(l—ﬁ)

This is covered in depth in chapter 9.4, but since we're not doing that chapter, we don't care.
Obvious solutions to this equation like P(t) = M or P(t) = 0 are called equilibrium solutions.
9.1.2: General Differential Equations

The order of a differential equation is the highest power present in the equation. To solve a differential equation, we try to
find an equation that when substituted into the equation, satisfies it. There will often be multiple solutions. These
solutions will usually be of a family, like solutions of type f(x) = 2kz for an arbitrary constant k. Finding a family of
solutions like this is called the general solution.

Most of the time, you will need to narrow down your solutions by satisfying a condition, called an initial-value problem.
Basically, your solution must pass through a point (g, yo).

9.3: Separable Equations
9.3.1: Separable Differential Equations
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A separable equation is a first-order differential equation where you can factor it into a function of z and a function of y,

i.e

dy

= = f(@)g(y)

Then, you can separate terms of z and terms of y, and then integrate to implicitly describe g(y) in terms of z.

/ f(z)dz = / 9(y) dy
fz)=g(y)+C

Solving for y, we get the solution(s) to the differential equation. This leaves a constant term, which will be eliminated

given an initial-value constraint.

The constant is important, don't forget it. Technically both integrals will create a constant term, but since C is arbitrary,
we can combine them into one.

9.3.2: Orthogonal Trajectories

An orthogonal trajectory is a family of curves that intersects a given line perpendicularly. We say the given line and the
family of curves are orthogonal trajectories of one another.

To solve an orthogonal trajectory problem, turn the given curve(s) into a differential equation by differentiating it and

then solving it for a general solution.

9.3.3: Mixing Problems

This kind of problem is as follows: if a fixed-capacity container is filled with some amount of a substance, something is

added at a fixed rate, and the mixture leaves at a fixed rate.

The main function is the amount of substance in the container as a function of time, and its derivative the rate of which it

is being added, minus the rate of which it is being removed.

The shtick here is remembering to take into account both entry and removal rates in the derivative.

3.8: Exponential Decay and Growth
Exponential growth is an application of differential equations. As a reminder, the equation

dy _

=k
dx 4

means that the rate of change of y (which is a function of z) is equal to y itself multiplied by a constant. At y(0) = ¢, c is
the initial value of the equation.

The only solutions of the differential equation dy/dt = ky are the exponential functions

y(t) = y(0)e™

(I recommend trying to derive this yourself. Hint: separate the equations.)

3.8.1: Population Growth
Manipulating

dP
— = kP
dt

dP 1
dt P
The quantity ‘fi—f% is the relative growth rate. If the growth rate is proportional to the population size, we can say that the

relative growth rate is constant.
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For simple differential equations of this form, you can use the general solution provided like 10 seconds ago

P(t) = P(0)e"

to find the population at time ¢.

Common mistake: if you are provided a doubling rate or something, do not use the relative growth rate. 221 compares

infinitesimal changes in both variables and k is only for that case. In other words, 22 =£ 28 The one on the left is the
small change in P over the small interval ¢, and the other is the average rate of change over a finite time period. If you

want to use finite values of growth, use the equation in the box instead.

3.8.2: Radioactive Decay

We do the same thing for radioactive decay. We can express

dm_k
a
dm-m
dt =k

since radioactive materials decay faster the less material there is. Note that & in this case will be negative. We adapt the

same general solution as well:
m(t) = m(0)er

Common mistake: The 'half-life' is NOT k. To find the half life, you need to solve the equation m(t) = %m(O), by finding

k somehow.

3.8.3: Newton's Law of Cooling

This is a bit more complex. Newton's Law of Cooling is that the rate of cooling/warming of an object is proportional to
the temperature difference between the object and the surroundings. Let T'(¢) be the temperature of the object and T (¢)
the temperature of the surroundings.

ar

dt

dT - (T — T,)
dt

= k(T - Ts)

=k

You can reduce the term (T' — T) to something like y(t) to make things simpler. If we do, the better version to use for

problems will be

In these kinds of questions, you will probably have to take the limit of 7" or T at some point since things don't get

cooler/warmer forever.

3.8.4: Continuously Compounded Interest

If an account is continuously granted interest per year, interest credited per year will increase as money in the account

increases.

You may be familiar with the equation
nt
A=A(1+2)
n

from high school, which works, but if we take lim,, ..., we can use the differential equation

dA
o ™

dA - A
=r

dt
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and use

A(t) = A(0)e™

where A(t) is the amount of money in the account at time ¢, r is the interest rate per year as a decimal, and ¢ is the number

of years.

This is called continuous compounding, where instead of compounding our interest at months or years, we compound at
infinitesimally small blocks of time (since we took n — oo) which lets us get a lot more precise.

9.5: Linear Equations
9.5.1: Linear Differential Equations

A first-order linear differential equation is an equation that can be put into the form

V4 Py =0Q@) o y+Paly=0Q)

where P(z) and Q(x) are functions continuous on a given interval.
These are not separable because there are terms containing both = and y, but we can still factor it.

All first-order linear differential equations can be factored by multiplying both sides of the formula by an integrating

factor I(z). The goal is to find an integrating factor such that when multiplied, the equation becomes
I(z)(y' + P(z)y) = I()Q(z)
Using the product rule on the left hand side with £ (I(z)) = I(z)P(z) and %y =y

(I(z)y) = I(z)(y' + P(z)y)  (LHS)

Integrating both sides, we get

And we can solve for y:

1
I(z)

/ [(2)Q(z) da + C

y(z) =

Challenge: try to derive a formula for I(z). You will need to separate the equation at some point. Or just look below for
the general formula for I(z) for a first-order linear differential equation.

To solve the linear differential equation dy/dz + P(z)y = Q(z), multiply each side by
the integrating factor I(x) = e/ P®) 4= and then integrate both sides.

9.5.2: Application to Electrical Circuits

This subchapter will not be tested in this course but is here for posterity.

Ohm's Law says that the voltage drop due to a resistor is equal to RI. Faraday's Law says the voltage drop due to an
inductor is equal to LZ—{. If we have a circuit with both an inductor and resistor, the sum of the voltage drops must equal
to sum of the voltage gain:

dI
L= +RI=V(}

(If you didn't already learn this in PHYSICS 1E03, you will soon. Enjoy!)
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This is a first-order linear equation. The solution gives I(t), current at time ¢.
10.1: Curves Defined by Parametric Equations

10.1.1: Parametric Equations

Functions are defined as y = f(x), where the y-coordinate is a function of another variable z. Parametric equations are
plotted such that both their y and = coordinates are functions of a third variable, usually ¢, such that g(t) = f(¢) and

(.73‘, y) - (f(t)7g(t))'

Since most parametric equations are not functions, they fail the vertical line test and can subsequently not be defined by a
single function of form y = f(z). However, if you are able to eliminate ¢ and express a portion of the curve in terms of
and y, that is called eliminating the parameter. For example, a circle 4> = 1 — 22 cannot be expressed as a function, but
you can get close by plotting only one half with y = +/1 — 2.

Parametric curves can also plot the direction of movement. For example, as t increases, the curve will be drawn in any

specific direction, unlike a function where the function will always be plotted to the right as = increases.

10.1.2: The Cycloid

This subchapter will not be tested in this course but is here for posterity.

The curve traced by a point on the circumference of a circle as it rolls is called a cycloid.

I don't actually know if you need to know how it is derived, but essentially, we find the xz-value by finding the total
distance rolled by the center of the circle using the expression r6, then subtract the z-component of the radius, rsin 6, to
get the z of a point on the edge.

To find the y-value, we do the same thing: the center of the circle is always 7, so we subtract the y-component r cos 8 to
find the y-value of a point on the edge.

All of this uses the variable 6 as the third variable instead of ¢, representing the degrees rotated by the circle.

z =1r(0 — sin ) y=1r(1—cosf) fcR

You can eliminate the parameter, but you'll just get a complicated equation for a small part of the full cycloid.
10.1.2: Families of Parametric Curves

Some parametric curves can be in families. They can be categorized by their shared features. Often, they will share
similarities in their formulae as well, such as with the linear curve family z = at + b,y = ct + d. Especially, they may look

like progressions or have similar appearances as you change the constants a, b, c,d, .. ..

10.2: Calculus with Parametric Curves

10.2.1: Tangents
If we want to find the tangent at a point on a parametric curve, we can use the chain rule. The goal is to find g—z. The
chain rule defines % = (s—z) - (4+). Notice how the du term appears to cancel out. We do the same thing with

z = f(t),y = g(t),

dy _ (dy\ (dt\ _ @ £ 92 g
de  \ dt dz _Cé_f; dt

Intuitively, g—g represents the ratio between a small change in y and a small change in x. Since we can only represent x and

y through the intermediary variable ¢, this formula says "for a small change in ¢: how much does y's change compare to z's
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change?" It is the same thing as ==, but thls formula just has the addition of ¢ since they both depend on it. So, we don't

need to eliminate the parameter to fmd =

2
If you need it, here is the formula for the second derivative, Z =

d ( dy
d?_y d dy dt ( dzx )
dx? dx \ dz Z_ff

To find the tangent, do as you would with a function: fmd Y with the formula, substitute in, find the slope, and solve for
the rest.

To find the second derivative, find j—z, then take its derivative with respect to t. Then, divide by the derivative of z with
respect to t.

Also, at certain points, you may get multiple results for tangent lines. This happens when the curve doubles back over a
point with a new distinct behavior. This will be represented by a situation resulting in a + or a polynomial while solving
for t when given a point (z, %), such as t?> = 1. Alternatively, when facing trig functions, be careful that the points given
cannot be obtained through using different angles in the trig functions: you need to account for each different valid input.
Be careful!

10.2.2: Areas

The area underneath a curve is

b
A:/ y dz

Substituting y = g(t),dz = f'(t) dt :

B
A= / g(t)f'(2) dt

10.2.3: Arc Length

The formula for the arc length of a segment of a function is

[ ()

Suppose this segment can also be described by parametric equations. Inserting what we know g—z to be,

e[y (B) e [ ()

The good thing about this formula is that it works on any curve, even curves that cannot be represented as y = f(x).

There's a big proof in the textbook using MVT, a Riemann sum, and such, but formally,

If a curve C is described by z = f(t),y = g(t),a < t < B, where
f' and ¢’ are continuous on [a, 8] and C is traversed exactly once
as t goes from a — (, then the length of C'is

[ ()

While using this formula, be careful that C is only traversed once! If you define your bounds incorrectly, you may go over

the same curve twice (like using 27 instead of 7 with a circle of radius 1)

3. The Polar System, Partial Derivatives, and Multi-Integrals

This covers material after Test 2. Final stretch.

10.3: Polar Coordinates
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10.3.1: The Polar System

While the Cartesian system uses an ordered pair of values to determine where on the plot a point is located, the polar

coordinate system uses the format
(r,9)

where r is the radius, the distance between the pole (a point we choose as the origin) and the point, and 0 the argument,
the angle from the pole the point is situated at in radians.

10.3.2: Relationship Between Polar and Cartesian Coordinates

The polar system uses a distance and angle approach, meaning we can convert it into Cartesian coordinates using
trigonometry. Take the pole to be at (0, 0).

x =rcosf y=rsinf

To convert from polar to Cartesian, we do

7'2::(:2—|—y2 tanﬁzg
T

Which can all be deduced from the Pythagorean theorem and trigonometry.

10.3.3: Polar Curves and Symmetry
The graph of a polar equation is all points (r, 8) that satisfy the equation.

You will not be expected to sketch polar curves in this course, but you may be expected to match a curve to an equation or
something of that like. For complex curves, graph convenient points like &, 7, ... and connect them with curves. Ask
yourself questions like what happens where 7 = some value you can see on the graph? What happens at this location

where you can see an oddity?
You can also take advantage of symmetry to sketch polar curves.

If a polar equation is unchanged when —#@ replaces 6, it is symmetric about the polar axis.

If the equation is unchanged when —r replaces r or 6 + 7 is replaced by 6, the curve is symmetric about the pole.

s

If the equation is unchanged when m — 6 replaces 6, the curve is symmetric about 6 =

10.4: Calculus in Polar Coordinates

10.4.1: Area

For a region bounded by a polar curve between two angles a, b, we split the area into a bunch of sectors of a circle, then
sum them all using a Riemann sum.

b 1 )
A= [ Sty a

If you wish to find area bounded by two curves,

Solve simultaneously to find intersections
This can be complex, you may need to use symmetry or geometry to find points of intersection that you can't find
by solving simultaneously.

Drawing or sketching the curves are highly recommended.

This is because there are many ways of representing the same point in polar geometry.

Solve with the formula 4 = 4 ff(\[f(&)]z — [9(8)]2]) dz

You can eschew the absolute value and figure out which one is on top and which one is underneath or just do it
this way. Your choice

10.4.2: Arc Length
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To find arc length, we use the cartesian-to-polar equations to convert polar curves into parametric equations, then use the

same method we did for those. For a polar curve with r = f(6):

b dr 2
L = 2 — dé
/a \/ * (do)

10.4.3: Tangents

We convert polar curves to parametric equations again and use the same method. The formula for the slope of a tangent
line at r = f(0) is

dy % %sin@ + rcosf
dz Z—z %cos 0 — rsin@

We can find horizontal tangents by finding points where % = 0 and vertical tangents by finding points where % = 0.
14.1: Functions of Several Variables

14.1.1: Functions of Two Variables

When a function has two variables, we denote it f(x,y). It is a rule that gives to every ordered pair of real numbers (z,y) a
corresponding value f(z,y). The set in which all (z, y) belong to, D, is the domain of the function, and its range is the set

of values of f(z), {f(z,v) | (z,y) € D}.

As in one-variable functions we set y = f(z), we can set z = f(z,y).
A graph of a function of two variables is the set of all points (z, ¥, z) in R3 such that z = f(z,v), (z,y) € D.

14.1.2: Level Curves and Contour Maps

A contour map is one of those map things where a 2D plot where points of constant elevation form lines. Google it, you

know what they are.

Specifically, the level curves of a function f of two variables are the curves with equations f(z,y) = k, where kis a
constant.

Each line in a contour map is a level curve, and contour maps are usually made up of several level curves, each for a value

of k at equally-spaced intervals.
The following two restrictions must also be followed:

Level sets must be in the domain of f(z,y). If not, you will have made meaning where there is none, and your level

curves will be invalid in that spot. So, make sure you check the domain of f before making your curves.

Level sets of different k values cannot cross one another. Well, they can, it just means fisn't a function.
14.1.3: Functions of Three or More Variables
This is the same deal as two-variable functions but for three variables. f(z,y, z) = w.
14.2: Limits and Continuity

14.2.1: Limits of Functions of Two Variables

These work similarly to how you would expect: if you can take your value f(x,y) as close as you like to a number L by
moving the pair (z,y) closer to another pair (a,b), then we can say that the limit of the function as (z,y) — (a,b) is L.
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Formally:

Let f be a function of two variables whose domain D includes
points arbitrarily close to (a,b). Then we say that the limit of
f(z,y) as (z,y) approaches (a, b) is L and we write

lim f(z,y) =L
(z,y)—(a,b)
if for every number ¢ > 0 there is a corresponding number § > 0 such that

if (z,y) € Dand 0 < \/(a:—a)2+(y—b)2<5then\f(a:,y)—L\ <e

But again, you really don't need to know this exact formal definition.

14.2.2: Showing That a Limit Does Not Exist

On single-variable functions, we can approach a limit from either the left or right. We know if the limit from the positive
end does not equal the limit from the negative end, the limit does not exist. Since there can be nearly infinite ways to
approach any point since our graph looks more like a plane than a line, we adapt this rule.

If f(z,y) — Ly as (z,y) — (a,b) along a path C}
and f(z,y) — L2 as (z,y) — (a,b) along a path Cs,
where Ly # Lo, then lim  f(x,y) does not exist.

(m,y)—>(a,b)

Usually, the most convenient way to accomplish this is by having one path approach the point along the z-axis, and the
other approach from the y-axis. Also note the inverse is not true: even if both limits exist, that does not guarantee the
limit exists. As long as there is one path that does not give you the same L as the others, it will not exist.

14.2.3: Properties of Limits

A lot of the same ones as normal limits apply here.

L ) T = B Fed B o
2 waitan DY) I WL= i T@ ) = ey 9 Y)

* el Ban TV =0 i, T

' (m’yl)ig%“’b) iz sz 9] = (m,yl)ig%a,b) f@,9)- (m,yl)ig%a,b) 9(@y)

& (w,yl)ifza,b) ;Ez: z; N EI;ZZ:((Z: ZEZ z;’ provided that (m,yl)iffa,b) 9(z,y) # 0

The squeeze theorem is also here and it works about how you would expect.

If h(z,y) < f(z,y) < g(z,y) for all (z,y) in a disk
around (a, b) (except possibly at (a, b) itself) and if

lim A(z,y) =1L
(z,y)—(a,b) (
and lim x,
ey I
then: lim f(x,y
(z,y)—(a,b) (

Also, remember that algebraic combinations of common functions (exponentials, trig functions, polynomials, rationals,
etc) are all continuous on their domains. If two functions of different domain are combined, the function may only exist

when both domains are satisfied. In other words, the new domain will be the intersection of the domains.

14.2.4: Continuity

We base continuity on the direct substitution property above.
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A function f(z,y) is called continuous at (a, b) if

lim )f(w,y) = f(a,b)

(z,y)—(a,b

We say that f is continuous on D if f is continuous at every point in D.

14.2.5: Functions of Three or More Variables

We can do all of this with functions of three or more variables. The notation

lim flx,y,2) =L
(z,y,2)—(a,b,c) ( )

signifies that the value of the function will approach L as the point (z, y, z) approaches the point (a, b, ¢). Of course, same

as two variables, continuity is defined as

lim  f(z,y,2) = f(a,b,c)

(z,y,2)—(a,b,c)

Here's the formal definition if you want it, but you really don't need it.

If f is defined on a subset D of R", then
lim f(x) =L

X—a
means that for every number € > 0 there is

a corresponding number § > 0 such that
if x€D and 0<|x—a|<$é
then |f(x)|<e

14.3: Partial Derivatives

14.3.1: Partial Derivatives of Functions of Two Variables

Partial derivatives are derivatives where we take one variable to be constant. For example, f(z,y), if we keep y fixed at a
constant ¢, we can take the derivative of the new single-variable function f(x). We call it the partial derivative of f with

respect to z at (a,b) and denote it by f,(a,b).

From the definition of a derivative, we can say that

fe(a,b) = lim

f(a+hab) _f(a'7b)
h—0 h

and ditto for the derivative with respect to y. Now, if we let (a, b) vary, we get the two new functions of two variables

Fuly) = lim flz +h, y}i — f(z,y)
f,@,9) = lim flz,y+ h}i — f(z,9)
and we can solve.
There are also a bunch of other fun ways to portray partial derivatives:
folww) = fo = 9L = T fay) = 02 = fi=Dif = Duf
Few) = fy = 5 = 5oF@) = 5o = fo = Daf = Dyf

Deriving partial derivatives in practice is pretty simple, just treat one variable as a constant, and differentiate with respect

to the other one.

14.3.2: Interpretations of Partial Derivatives

A function f(z,y) graphically is a surface in a 3D space. If we take the derivative at (a, b) while setting a variable to

constant, what we get graphically is the slope of the tangent line at the point in question to the curve created by the
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constant variable. It's kind of hard to explain. Go watch a YouTube video if you really want to know. Not technically

tested but can make some specific types of problems easier.

14.3.3: Derivatives of Three or More Variables

This subchapter will not be tested in this course but is here for posterity.

We can also do partial derivatives for functions of three or more variables, for example

f(a:—i—h,y,z)—f(a:,y,z)
h

— 1
fz(z,y, 2) lim

Which works about the same you would expect: hold y and z constant and differentiate f(x). Just don't try to represent it
geometrically.

14.3.4: Higher Derivatives

Since partial derivatives of a function of two variables f are also functions of two variables, we can create partial
derivatives of those. Here are some examples of what that looks like.

=== 5 (52) = 3 = 3
05 1o= 2= 35(5:) = 3t = oyt
00:= b= 1= 35 () =y ~ 9
= tw=t2= 5, (57) = 55 = 3

These look hard, but all you need to do in practice is go in order left to right. For f,, for example, differentiate with

respect to z, then differentiate the result with respect to y.

Notice how f,, = f,,. We can extend this using Clairaut's Theorem:

Suppose f is defined on a disk D containing the point (a,b). If the
functions f,, and f,, are both continuous on D, then:

fa:y(a7 b) = fyac (a7 b)

Which lets us do fun things like f,,, = fyzy = fyye With even higher-order partial derivatives.

14.3.5: Partial Differential Equations

This subchapter will not be tested in this course but is here for posterity.

Partial derivatives can show up in differential equations. For example,

Pu_
oy?

0%u

—_— 0
Ox?

is known as Laplace's equation and its solutions are harmonic waves.

Another example is the wave equation

0%u

o2

5 0%u
a —
Ox?
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14.4: Tangent Planes and Linear Approximations

14.4.1: Tangent Planes

The tangent plane at a point (z,y, z) on a plane z = f(z,y) is defined as a plane where it just touches (z, y, z) and shares

the same slope as z = f(z,y) in all directions.

Suppose f has continuous partial derivatives. An equation of the tangent
plane to the surface z = f(z,y) at the point (zo, yo, 20) is

z— 20 = fo(®0,Y0)(x — z0) + (0, Y0) (¥ — Yo)

14.4.2: Linear Approximations

The linearization of a function f at a point (a,b) is a linear function L(z,y) that is a good approximation to f at (a, b).

L(ZB,y) = .f(a’a b) + fw(aa b)(:l? T a’) + fy(a, b)(y_ b)

In single-variable functions, this is the same thing as finding the tangent.

If z = f(x,y), then fis differentiable at
(a,b) if Az can be expressed in the form

Az = fy(a,b)Ax + fy(a,b)Ay + 1Az + €Ay

where €1 and €4 are functions of Az and Ay
such that £; and €5 — 0 as (Az, Ay) — (0,0).

Essentially, what this says is that the error terms € should vanish as you approach the point, meaning the approximation is

good.

This is very impractical because ain't no one actually gonna do this, so we usually use

If the partial derivatives f, and f, exist near (a,b) and are
continuous at (a,b), then f is differentiable at (a, b).

14.4.3: Differentials

0z 0z
dz = fo(z,y) dz + fy(z,y) dy = 2 dz + M dy

dz is known as the total differential.
Note dz and Az are not the same quantity.
Az refers to how much z changes when you move from (z,y) to (z1,y1), which is basically the actual change in z.

dz represents the approximate change: when we linearize to create an approximation (a tangent plane) at a point, dz refers
to the estimate of how much z will change as you go from (z, y) to (x1,y;) based on the approximation you made. It's just

a number after the calculations are done.

14.4.4: Functions of Three or More Variables

This subchapter will not be tested in this course but is here for posterity.

We can do all of this for functions with more than two variables. For example, the linear approximation of w = f(z,y, 2) is
f(wa Y, Z) ~ f(aa b) C) + .fﬂl(a'7 b7 C)(w o a’) + fy(aa b7 C)(y - b) + fz(a, b? C)(Z - C) - L($7 Y Z)
the increment of w (Aw) is

Aw = f(z + Az,y+ Ay, z+ Az) — f(z,y, 2)
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and the differential dw is

Ow dw—l—a—wdy—l—a—wdz

dw = Bz Oy 0z

14.5: The Chain Rule

You better know the chain rule pretty damn well to get this chapter.

Let us revisit the 'normal’ chain rule: If y = f(z) and z = ¢(¢), i.e y = f(g(t)) where both f and g are differentiable, then y

is differentiable in terms of ¢ and

dy _ dy dv
dt  dzr dt

14.5.1: The Chain Rule - Case 1

Let us say we have a function z = f(z,y) and both x = ¢(¢) and y = h(t) are differentiable functions of a fourth variable ¢.
This is Case 1.

Suppose that z = f(z, y) is a differentiable function of = and y,
where x = g(t) and y = h(t) are both differentiable functions of
t. Then z is a differentiable function of ¢ and

dz Of dz Of dy
dt Oz dt dy dt
_ Ozdxr 0z dy
“ocdt | Gydt

14.5.2: The Chain Rule - Case 2
Let us say we have a function z = f(z,y) and both x = g(s,t) and y = h(s, t) of two more variables s, t. This is Case 2.

Since we have another variable now, in order to differentiate z = j(s, t), we need to find two partial derivatives, each

holding one of s,t constant. We apply the formula from Case 1 to both to get

Suppose that z = f(z,y) is a differentiable function of = and y, where
z = g(s,t) and y = h(s.t) are both differentiable functions of ¢. Then:

0z 0z Oz 0z @ 0z 0z Oz 0z @

9s oz 0s | oy 0s o oz ot oy ot

We can call s and t independent variables, z and y intermediate variables, and z the dependent variable.

This flowchart helps explain it. (Yes, it's janky, I'm relying on an Obsidian plugin to use math formatting inside the

Mermaid chart)

Oor Oy Ox Oy
Bs. s Ot ot

Each layer represents one of the three types of variables. If you want to find a specific quantity, for example %, go down
the flowchart to link all occurrences of z and s, multiply each item on the same path, and add it all together.
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14.5.3: The Chain Rule - General

The tree diagram last time was overkill since we only had to deal with two intermediate variables. Let us expand our

thinking to a general variable w that is a function of n intermediate variables x, zs, . .., z,, which are each functions of m
independent variables t1, t2,...,t,. Notice in each case, there are n total variables.
Suppose that u is a differentiable function of the n variables z1,z2,..., 2y
and each z; is a differentiable function of the m variables t,%,,...,t,,.
Then w is a function of 4, ¢5,...,t,, and
ou Oou 0x; Ou Oxs ou Oz,
— + 4+t
foreachi=1,2,...,m.

Let's get another tree diagram in here.

Oz
ou

Okay the label spacing is horrible but you see the point.

14.5.4: Implicit Differentiation

Suppose we have an equation F(z,y) = 0 that describes y implicitly as a differentiable function of z. Remember that
'implicit' means there is a relation between y and z. If F' is differentiable, we can differentiate it with the chain rule Case 1

dy
and rearrange for —-~.

OF
dy o _ I
dz F F,
Oy

The reason this works when F(z,y) describes y implicitly is because we can rewrite it as F(z, y(z)) and then we can use

the chain rule.

Fun fact: In more advanced calculus, you will learn that solely having a format F(z,y) = 0 does not necessarily describe y
implicitly, and there are conditions that defines when it does: the Implicit Function Theorem. The following must be

true:

If F'is defined on a disk containing (a, b) where:
F(a,b) =0
Fy(a,b) #0
F, and F), are continuous on the disk

We can extend this to functions of more than one variable: if z is given implicitly by F(z, y, z) = 0, we can use the chain

rule again:
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oF
0z 5  F
~  oF [
or h F,
oF
9 w __F
oF
Oy 0z F

The Implicit Function Theorem has conditions for this as well, the same thing as above but with spheres instead of disks.
14.6: Directional Derivatives and the Gradient Vector

14.6.1: Directional Derivatives

We already know the formulas for partial derivatives of a function z = f(z,y) in the z and y directions from 14.3. For

reference:
h,y) — ’
Fo(z,y) = lim f(z+ y}i fz,y)
) h) — ,
fy(w,y):lllii% flx,y+ })L f(z,y)

But, if we want to go in any other direction that isn't i or j, we need something else. Let u be an arbitrary unit vector in
some direction. We have a function f, and we want to find its instantaneous rate of change in the direction from our
starting point (z, yg) to u.

The directional derivative of f at (zo,yo) in direction of unit vector u = (a, b) is

3 foFha,y + hb —fZL‘,y
Duf($0ay0):}1l1i% ( 0 0 - ) ( 0 0)

if this limit exists.

What we did is move a small distance h from our starting point to our target, measure how much the function f changed
with that small step, divide by the step's size h to get the average rate of change, then take the limit as the distance h
approaches 0 to find the instantaneous rate of change.

Try plugging the unit vectors i, j in and seeing what happens ((0,1), (1, 0) respectively). Look familiar?

The formula above is the formal definition, but when doing problems, we usually use this one:

If fis a differentiable function of x and y, then f has a directional
derivative in the direction of any unit vector u = (a, b) and

Duf(ma y) = fw(xa y)a + fy(x,y)b

Warning: Unit vectors must have length 1. If a problem requires you to calculate your own unit vector or derive a unit
vector, be wary of this! You can check the length of a vector using the Pythagorean theorem. For example, using
trigonometry with an angle will give you a vector, that while of the correct angle, is magnitudes too large and must be
scaled down.

14.6.2: The Gradient Vector

This is pretty important for fields like machine learning.

If fis a function of two variables « and y, then the
gradient of f is the vector function defined by

0 0
VHa,) = Fale,), fy@,0) = ori+ S
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We get this from the last equation in the last subchapter: we can rewrite D, f(x,y) = f.(z,y)a + f,(z,y)b as a dot product.

Duf(way) - fl‘(m)y)a' + fy(az,y)b
- <f93(xay)7fy($7y)> " \@, b>
- <fm(xay)7fy($7y)> -u

The first term comes up often enough we just gave it a special name.

We can therefore rewrite the aforementioned equation:

-Duf(w,y) = Vf(wvy) ‘u

(I'm assuming you know what dot product is from physics)

14.6.3: Functions of Three Variables

This subchapter will not be tested in this course but is here for posterity.

The directional derivative of f at (zo, Yo, 20)
in the direction of a unit vector u = (a, b, ¢) is

f(zo + ha,yo + hb, zo + he) — f(zo, Yo, 20)

Dy f(zo, Y0, 20) = }llf(l)

h

We can compact this by writing it in vector form:

Dy f(x0) = llzlir(l)

f(xo + hu) — f(xo)

The gradient vector for three variables is:

h
VS = (fusfn £ = ghit G+ ol

Then we rewrite the formula for the directional derivative:

Duf(maya Z) - Vf(w,y, Z) ‘u

14.6.4: Maximizing the Directional Derivative

Sometimes, we want to find the direction from a point in which the rate of change is the greatest.

Suppose f is a differentiable function of two or three variables. The maximum value
of the directional derivative D, f(x) is |V f(x)| and it occurs when u has the same
direction as the gradient vector V f(x).

14.6.5: Tangent Planes to Level Surfaces

This subchapter will not be tested in this course but is here for posterity.

As a reminder, a level plane is a plane in which f(x,y, z) = ¢ for some constant c. At any point P = (x, yo, 2¢), the tangent

plane is the plane that 'just touches' the surface at P and is flat in the neighborhood, serving as a good approximation to

the surface at that point.

A tangent plane to the level surface F(z,y, z) at P(xq, Yo, zo) is defined as the plane that passes through P and has a

normal vector (i.e the vector with n - ¥ = 0 for normal vector n and any vector in the plane v) VF(zo, yo, 20). Therefore, the
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general equation of this tangent plane is

Fy (0,0, 20)(x — o) + Fy(z0, Y0, 20)(y — o) + F2(x0, Y0, 20)(2 — 20) =0

14.6.6: Significance of the Gradient Vector

Here are some fun properties of the gradient vector.

Let f be a differentiable function of two or more
variables and and suppose that V f(x) # 0.

e The directional derivative of f at x in the direction of
a unit vector u is given by D, f(x) = Vf(x) - u.

e Vf(x) points in the direction of the maximum rate of

increase of f at x, and that maximum rate is |V f(x)]|.

e V f(x) is perpendicular to the level curve or level

surface of f through x.

This lets do some cool things like plot the steepest rate of ascent up a contour map.

Also, if you're interested in machine learning or in compsci, check out GrRADIENT DESCENTS. You'll be learning that soon
enough. Have fun!

15.1: Double Integrals over Rectangles

15.1.1: Volume and Double Integrals
Definite integrals in functions f(z) can be used to find areas. Similarly, double integrals can be used to find volumes.

Consider a function of two variables f defined on a rectangle R = [a,b] X [¢,d] = {(z,y) € R? |a <z < b,c <y < d}. That
X is not a cross product, by the way. Geometrically, this means the function's domain is the set of all points (z,y) in a
rectangular field bound by [a, b] and [c, d].

Let the solid in that rectangular field bounded by the rectangle and the function z = f(x, y) be called S.

If we split up R into lots of smaller rectangles in a grid pattern, we notice we can approximate the volume of S by
summing the volumes of all the smaller rectangles, ergo

V&~ Z f(w;'kja y;'kj) -AA

i=1 j=1

Intuitively, this means that for the i-th 'column' and j-th 'row' in the grid of rectangles, we evaluate the volume and add it
to the total. Remember the volume of a rectangular prism is its area times its height. From the definition of a definite
integral in 2D, we know that we should take the limit:

m n
V= im ; 2 f(zij,yi5) - AA

and if we recall Riemann sums, we can condense this into a familiar form.

The double integral of f over the rectangle R is
[[ ) aa= im WY
R ==

if this limit exists.

Putting it all together,
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If f(z,y) > 0, then the volume V of the solid that lies
above the rectangle R and below the solid z = f(z,y) is

szyﬂ%wdA
R

The double-sum version (without the limit) is called a double Riemann sum.

15.1.2: The Midpoint Rule

Recall the midpoint rule for single integrals. If we have an integral fab f(z) dz, we can approximate it pretty well by
dividing the interval into n subintervals and then using the value of the function at the midpoint of each subinterval to
estimate the area.

n

b
[ #@)da~acy s
a i—1
where Az = % and z} is the height of the midpoint of the ith subinterval, or z} = a + (i —

n

|

)Am.

We can do something similar for functions of two variables.

n

[[ f@v aa=> > s@.z)a4
R

=1 =1
where z; is the midpoint of [z;—1, x4
and y, is the midpoint of [y;_1, y;]

You will be provided values for m and n which represent how many subintervals you will approximate with.
Note that we can only interpret a double integral as a volume if f is positive.

15.1.3: Iterated Integrals

This is a technique we can use to directly evaluate a double integral.

In our volume double integrals, we have had the differential term dA when f is a function of x and y. However, if we use
the notation fcd f(z,y) dy, it signifies that we are holding x constant and integrating with respect to y. This process is

called partial integration with respect to y. Note similarity to partial differentiation.

Now this result will be a function of z, so therefore we can write

Alz) = / " Hoyy) dy

And let us integrate both sides from a to b:

. /abA(a:)dazzfazl/c:f(w,y)dy]daz
[ [ tevayae- | [/ f(w,y)dy]d:c

Note we must work from the inside out. The following is a more practical theorem for the purpose of turning a double
integral into iterated integrals named Fubini's Theorem:

If fis continuous on the rectangle
R={(z,y) la<z<bc<y<d}

then
/[ 1@ dAz/ab/cdf(w,y) dydw:/ab !/cdf(a:,y)dy]da:
R

More generally, Fubini's Theorem is valid if we assume f is bounded on R, f is discontinuous only on a finite number of

smooth curves, and that the iterated integrals exist. The next theorem follows from the special case where we assume that
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f(z,y) can be factored into the form g(x)h(y).

[[stwnw aa= [ @) ae [“n)ay
R

where R = [a, b] X [c, d]

15.1.4: Average Value

We know (at least you may know, since I don't think this is the syllabus for some math courses) that the average value of a

function of one variable f(x) is

1 b
fos =57 | fle) do

Similarly, the average value of a function of two variables f(z,y) over a rectangle R is

Fuvg = ﬁ J[ 1@ aa
R

where A(R) is the area of the rectangle.
15.2: Double Integrals over General Regions

15.2.1: General Regions

Consider a general region D on a Cartesian plane. D is called bounded if it can be enclosed in a rectangular region R.
Suppose D is bounded. We want to integrate a function f over D. To do so, let us define a piecewise function F(z,y) on

domain R:

[ f(z,y) if(z,y)isin D
Fla,y) = {0 if (z,) is in R but not in D

If F'is integrable over R, we define the double integral of f over D by

// f(z,y) dA = // F(z,y) dA where F is given above.
D R

This works is because when we take F(z,y) at a point out of D, we get 0. Thus, taking an integral including extra area not

included in D is fine, as long as the integral includes all of D, which is true for R.

However, it is not uncommon for f to have discontinuities at the boundary points at D. However, if f is continuous on D
and the boundary curve of D is well-behaved (you don't need to worry about that in this course), then [[ f(z,y) dA will
D

exist.

We call a plane region D Type 1 if it lies between the graphs of two continuous functions g;(z), g2(x) where g; and g, are

continuous on [a, b]. Picture an area between two curves from Calc 1. That's a Type 1 plane region.

We put the rectangle R around it to contain D, and we let F' be the piecewise function stated above. Through Fubini's

//F(m,y) dA:/ab/ch(ac,y) dy do
R

Recall that the rectangle R spans [a,b] X [c,d]. c and d are the y-components, and D is bounded by the two functions g,

Theorem, we can say that
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and g,. Also note how F(z,y) = 0 if y goes out of these bounds. Therefore, we can rewrite the above in another format.

If fis continuous on a Type 1 region D described by

D={(z,y) |a<z<b gi(z) <y < g2(x)}
then

J[ f@yaa= | b / g:(j) f(z,y) dy da
) lm

Now we consider plane regions of Type 2. These are planar regions bounded between two continuous functions of y. Yada

yada, it's the same thing as Type 1.

If fis continuous on a Type 2 region D described by
D={(z,y) |[c<y<d, hi(y) <z < ha(y)}
then

//f(:v,y) dA = /ab/hh:j) f(z,y) dz dy
) 1

Note the dz, dy have swapped places.

15.2.2: Changing the Order of Integration

We know we can state a double integral as an iterated integral in two different orders, dy dx and dz dy. But, sometimes,

one order is way harder than the other or just impossible.

If you are provided an iterated integral, you can convert it back to a double integral and study its behavior to swap its
order. There is no strict theorem to do this, as it is helpful to have a graph or sketch to be able to do it. However, the broad

strokes are:

Turn your iterated integral back into a double integral.
Don't forget your bounds: R = {(z,y) | a <z < b,c <y < d}.
Study the behavior of the graph. Your goal is to change the bounds of  and y such that it describes the same region R,
but expresses it in the opposite order.
Understand your inner variable and outer variable. If you want dz on the inside, you are looking for vertical strips
that go bottom to top, and vice versa.
Think about this: for a fixed value of the new outer variable, what are the smallest and largest values of the

inner variable?

Write the new integral with the new bounds.
If the region’s lower bound for y is a single equation y = g;(x) and the upper bound is y = gs(z), flipping gives
limits on x from the left-most z-value to the right-most z-value of the same region, and inside limits on y that

might now be functions of z. Works vice versa, of course.

Retry the integral in the new order.

15.2.3: Properties of Double Integrals

A lot of the properties of single integrals also apply to double integrals. Basically, everything works except for sign

flipping:
Z RCLE

The single-integral property f; fz)dz = [ f(z)dz + fcb f(z) dr has an analogue since we're in more dimensions now.

[ 1ewaa= [[ s@vaa+ [[ 1wy aa

We can use this to evaluate regions not strictly of Types 1 or 2: For example, if a region crosses back over itself, like the
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region between two circles, we can split it into multiple double integrals to solve it.

J[1aa=am)

D

That's the area of D.

We can combine multiple properties to prove the following:

If m < f(z,y) < M for all (z,y) in D, then
m-A(D) < f(z,y) dA < M - A(D)
J

Basically, if your plane in three dimensions can be bounded by two flat planes z = m, z = M, then the volume of the solid
under your plane is always more than the volume of the solid bounded above by m and always less than the volume of the
solid bounded above by M. This is pretty intuitive if you think about it.

Extra

Behaviors of Functions

Below is a table of various common functions/structures you may see. Note that this table counts convergence of

sequences. It may be useful for series, i.e the Test for Divergence, but this mainly tracks what happens as ¢ — oo in

Function T — 00 z— 0" T — —00

c c c c

x 00 0 —00

n® (forn > 1) 00 1 0

n=% (forn > 1) 0 1 00

In(x) 00 —00 Undefined

x! 00 1 Undefined

% 00 0 +o0o (depends on n)
» 0 Undefined 0

r¥(r > 1) 00 1 0

r®(r=1) 1 1 1

r*(0<r<1) 0 1 00

r(r < —1) Undefined (oscillates) = Undefined (oscillates) Undefined (oscillates)
sin Undefined (—1 <+ 1) 0 Undefined(—1 < 1)
cos Undefined (—1 > 1) 1 Undefined (—1 > 1)
tanz Undefined (—oco <+ 0c0) 0 Undefined (—oo <+ 00)
arcsin x Undefined (-1 — 1) 0 Undefined (-1 — 1)
arccos Undefined (—1 — 1) o1 Undefined (—1 — 1)
arctan x 3 0 ]

s 0 1 0

Rational (n = d)  Ednceofsun Constant Ccling ot sur
Rational (n > d) oo Constant +o0

Rational (n < d) 0 Constant 0

Scripts
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Since Obsidian is a janky program especially when it comes to LaTeX, I had to use some regex scripts to format
everything properly. For example, since Obsidian is an Electron app (you can even open the dev console like a webpage
using Ctrl - Shift-1)and MathJax is also a janky mess sometimes, having lone double dollar signs $$ (which escape
blocks of LaTeX-formatted math) on lines will break the compiler.

Too bad that my Latex Suite shortcuts do that automatically.

So, I had to write this Python script to remove each of them using a neat little method and some regex, as well as some

path patching so I can run it from the command line as part of an automated process.

import re
import os

def (text):
pattern = re. (' (2<!\\D\$\SC.*?2)\$\$', re.DOTALL)

def (match):
content = match.group(l)

lines = content.splitlines()
while lines and lines[0].strip() == '':
lines.pop(0)
while lines and lines[-1].strip() == '':
lines.pop()
new_content = ' '.join(line.strip() for line in lines)
return f'$$drLf{new_content}$$’
fixed_text = pattern.sub(repl, text)

return fixed_text

sdir = os.path.dirname(os.path.abspath(__file__))

npath = os.path.join(sdir, "note.txt")

fpath = os.path.join(sdir, "finish.txt")
with (npath, "r") as f:

a = f.read()

with (fpath, "w+") as f1:

f1l.write(fix(a))

I also wasn't happy with how the spacing between headings looked when I exported it to PDF, so I wrote a simple script

to add extra lines.

import re

with ("output.txt", "r+") as f:
text = f.read()

newtext = re.sub("(\r\n|\r|\n#)", "\n\n#", text)

newertext = re.sub(r"(#.*)", r"\1\n", newtext)

ab = re.sub(r"\r\n[\r|\n(?<!"\{D\C(([a-zDD\)C2\}D)", r"\n$\\text{(\1)}$", text)
f.truncate(0)

f.seek(0)

f.write(ab)

If you choose to make edits and notice your compiled PDF is broken or corrupted in some way, run it through these and

see if it fixes things.

Also, I export this guide in particular with the settings A3 paper, 18/16/12/12 mm margins top/bottom/left/right. This is
because some of the equations go off the page if I use A4 paper.
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Special Thanks

I want to express my thanks to everything that makes it possible for me to be making these guides.

Thank you to Obsidian, the best note-taking app ever. Being able to mess around with configs, add custom CSS snippets,
and edit my files as raw .md files is instrumental to my process. Also, thank you to the creators of the theme

Typomagical, my favorite Obsidian theme that makes writing these notes a pleasure to do.

I want to say that without the plugin Quick Latex (and now, Latex Suite), I would probably still be halfway through
writing the Linear Algebra Study Guide. The inline expansion macros, as well as Latex Suite's complex regex/Javascript

controllable macros, let me finish a giant block of equations in one minute rather than ten.

Better Export PDF also provides the perfect way to export a PDF in this program, adding headers/footers, custom
margins, and smarter logic when it comes to rendering a Markdown-LaTeX hybrid note into a PDF. To a lesser extent, I
want to wholeheartedly thank Admonition for cool callouts, Advanced Tables for making Markdown tables less of a drag,

and Mehrmaid for adding the functionality of using MathJax inside Mermaid charts, which can't have been easy.

Thank you to Syncthing for automatically syncing my files from my laptop to PC: I tried to use Git for this. Don't. Use
Syncthing.

Donations

If you want to give a poor and starving university student who also has saved over thirty poor orphans (who were also

starving by the way) from blazing homes a pittance, you may do so HERE.

You have no obligation to do so, of course, it is just a token of your grat- oh hey hear that? The meowing? That's the fifty
small kittens. That I also saved. From burning homes.

You still have no obligation to donate, by the way, just letting you know. :D

Thank you for using the guide!
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